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Abstract. A formulation describing electric-dipole absorption and resonance-enhanced
diffraction of x-rays is applied to a 3d9 ion in an octahedral crystal field and subject to a
magnetic field. Analytical results are given for both the idealized and the complete forms of the
scattering length. The contributing atomic quantities are discussed in detail, e.g. the spin–orbit
interaction and the quadrupole moment of the valence holes.

The model calculation was chosen to illustrate the use of a completely general formulation
of the scattering length, from which one obtains the attenuation coefficient and cross-sections
for elastic and inelastic scattering. Relevant tensor operators are referred both to unit tensors,
and to appropriately coupled operators of spin and orbital angular momentum. The quantities
that appear in the linear dichroic signal differ from corresponding results in the literature, and
reasons for this finding are discussed.

1. Introduction

While steady progress has been made in the development of a theoretical framework for the
interpretation of absorption and the resonance-enhanced scattering of x-rays by magnetic
materials, there are relatively few worked examples in the published literature. One of
the first illustrative examples is due to van der Laan and Thole (1990). A major value of
worked examples in this emerging field of research is that they provide some insight into the
atomic quantities that naturally enter the interpretation of experimental data. Furthermore,
they make concrete the theoretical developments in atomic physics that might, at first sight,
be inscrutable.

In this spirit, Sainctavitet al (1995) examined the x-ray absorption spectra of a 3d9 ion
in an octahedral environment. They calculated the matrix elements of the dipole operator for
the transition of the hole in the 3d shell to a 2p core state, and from these matrix elements
constructed the absorption spectra. The spin–orbit interaction on the 2p state splits the six
levels into two groups, with total angular momentaJ̄ = 1

2 and J̄ = 3
2. The levels in each

group are degenerate in energy, and they make up the L2 and L3 absorption edges. It was
shown that sum rules on the circular dichroic spectra at the two absorption edges agree with
the results predicted by Carraet al (1993b) on the basis of a more general approach. In
addition, Sainctavitet al (1995) carefully explored the properties of the mean value of the
magnetic-dipole operator, which arises in one of the sum rules.

Here, we present the diagonal matrix element, or mean value, of theidealizedscattering
length (Lovesey and Balcar 1997) for the same model 3d9 ion. It is used among other things
to demonstrate that the circular dichroic signal derived from the idealized scattering length
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is exactly the same as the one directly calculated by Sainctavitet al (1995). Moreover, all
of the atomic quantities in the isotropic signal and the linear dichroic signal are given here,
and their properties explored, e.g. the spin–orbit interaction and the quadrupole operator
for the orbit. In addition, we explore for the model ion acompletescattering length that
carries all quantum numbers of the core state. For a 3d9 ion the spectrum contains six
components, as already mentioned, and we explore how these depend on the parameters
that define the ground-state wave function. Another topic taken up is the cross-section for
Bragg diffraction.

An appendix to the paper contains general expressions for the matrix elements in the
idealized scattering length written in terms of atomic quantities. For the linear dichroic
signal our results are not the same as those reported by Carraet al (1993a).

The configuration 3d9 is appropriate to the ions Ni+ and Cu2+. In an octahedral crystal
environment the orbital for the ground state has the symmetry03. (NB van der Laan and
Thole (1990) consider a 3d9 ion in a tetragonal crystal environment.) This state is non-
magnetic, and a magnetic field has no matrix elements connecting the two orbital states of
03; see, for example, page 459 of Abragam and Bleaney (1970). In addition, the spin–orbit
interaction has no matrix elements within the03 doublet. The ground-state wave function
for 3d9 obtained with the crystal-field, spin–orbit and Zeeman energies is given in section 2.
In this case, the wave function explicitly depends on the ordering of the spin and orbital
angular momenta chosen in the coupling scheme.

The idealized scattering length for an E1 event is briefly reviewed in section 3, together
with the seven atomic quantities that enter it. The idealized scattering length is constructed
on the assumption that the states for an absorption edge are degenerate with respect to
their energy. This assumption is satisfied in the model used by Sainctavitet al (1995).
Thereafter, in the idealized scattering length the algebra for coupling angular momenta is
used to reformulate the product of matrix elements, of the dipole operator, in terms of a
linear combination of standard atomic quantities.

The results in section 3 are used in sections 4 and 5, respectively, to calculate the
dichroic signals in the attenuation coefficient and the unit-cell structure factor for Bragg
diffraction. Section 6 contains the details of the complete spectrum that contributes to the
scattering length for the wave function specified in section 2. A brief summary is found in
section 7. An appendix is given over to a précis of the idealized scattering length in terms
of the atomic quantities discussed in section 3. Of course, a 3d9 ion is an example of the
simplest type, since it contains one hole in the valence shell. The results in the appendix,
and Lovesey and Balcar (1997), apply to any configuration of the valence electrons.

2. The wave function of 3d9

The ground-state wave function of Cu2+ (3d9) is a linear combination of states with total
spinS = 1

2 and orbital angular momentumL = 2, and it contains wave functions with total
angular momentaJ = 3

2 and 5
2. It is derived by diagonalizing a Hamiltonian that contains

the spin–orbit interaction, a crystal-field interaction of Oh symmetry and a Zeeman energy
created by a magnetic field applied along the (001) axis of the crystal field. In terms of the
states|J,M〉 the wave function for the ground state of the ion is

|ψ〉 = sinθ

∣∣∣∣32, 3

2

〉
+ 1√

6
cosθ

{∣∣∣∣52, 3

2

〉
+
√

5

∣∣∣∣52,−5

2

〉}
. (2.1)

The sign of cosθ in (2.1) is different from the sign in the wave function derived by Sainctavit,
Arrio and Brouder (1995), hereafter referred to as SAB. The sign difference arises because
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we use a widespread convention in which spin and orbital angular momenta are coupled
in the orderS andL, whereas SAB use the less-favoured reverse ordering of the angular
momenta.

Two other features of (2.1) merit comment. First, the photon is absorbed into a 2p
state, with total angular momentum̄J = 1

2(L2) or J̄ = 3
2(L3). In an E1 absorption event

the total angular momentum changes by at most±1. Hence, an E1 event at the L2 edge
engages in|ψ〉 the state withJ = 3

2, and not the stateJ = 5
2. So, we anticipate that the

matrix element of the dipole operator for an L2 edge is proportional to sinθ . The second
feature relates to the values of the magnetic quantum number in|ψ〉. A matrix element
created with|ψ〉 contains contributions in which1M = 0 and±4. However, the product
of dipole matrix elements, which is here denoted byZ, is a sum of tensors of rankK = 0,
1 and 2. Thus, the contributions with1M = ±4 do not appear inZ, and, for the wave
function |ψ〉 studied here,Z is diagonal with respect toM. The latter feature is responsible
for the relative simplicity of the expression for the scattering length which is given in the
next section.

3. Scattering length

The Cu2+ ions are located at positions{R0} on a lattice. In the resonant scattering
process the x-rays change their wave vector byk. If the primary x-ray has an energy,
E = (2πh̄c/λ), that almost matches the energy of the absorption edge labelled by the total
angular momentum of the core stateJ̄ , the mean value of the resonant scattering length is

〈f 〉 = −
(

2πe

λ

)2∑
R0

{ 〈Z〉
E −1+ (i/2)0

}
J̄

exp{ik ·R0−W }. (3.1)

In this expression, exp(−W) is the Debye–Waller factor, and1 and0, respectively, are the
position in energy and the width in energy of the absorption line. Our expression forZ is
based on the dipole approximation to the absorption mechanism, and it does not include the
diamagnetic contribution created by the field applied to the Cu2+ ion. The matrix element,
or mean value, ofZ as denoted by〈Z〉 ≡ 〈ψ |Z|ψ〉 is discussed in an appendix.

In this section we focus on the physical properties of〈Z〉 for an ion described by the
wave function (2.1). We give the result for〈Z〉 in terms of its three contributions that are
labelled by the rank,K, of the tensor which is involved. In principle, the contributions can
be measured by observing the attenuation coefficient and the Bragg diffraction pattern. In
the following expressions,〈R〉 = 〈2p|R|3d〉 is the radial matrix element and̄J = 1± 1

2.
Writing

〈Z〉 =
∑
K

〈Z〉(K) (3.2)

we find the following expressions for the two allowed values ofJ̄ :

〈Z〉(0) = − 1

15
√

3
〈R〉2X(0)0

{
(2J̄ + 1)± 2〈S ·L〉} (3.3a)

〈Z〉(1) = 1

30
√

2
〈R〉2X(1)0

{
(2J̄ + 1)〈L0〉 ± 4

3
[2〈S0〉 + 7〈T0〉]

}
(3.3b)

and

〈Z〉(2) = − 1

45
√

6
〈R〉2X(2)0

{
(2J̄ + 1)〈Q0〉 ± 12

5
[〈P0〉 + 〈R0〉]

}
. (3.3c)
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In these expressions,X(K)0 represents combinations of the polarization vectors of the primary
(ε) and secondary (ε′) x-rays and

X
(0)
0 = −

1√
3
(ε′ · ε) X

(1)
0 =

i√
2
(ε′ × ε)0 X

(2)
0 =

1√
6
(3ε′0ε0− ε′ · ε). (3.4)

We note that only the diagonal elements of the spherical tensorX(K) are required for〈Z〉(K),
on account of the fact that for the wave function considered here all of the matrix elements
are diagonal with respect to the magnetic quantum numbers,M.

Evidently, the scattering length for Bragg diffraction can contain all three contributions
to 〈Z〉. However, the nature of the magnetic order in the sample can lead to the absence
of a contribution to a particular Bragg peak. For this to occur the chemical and magnetic
order must be different. The dichroic signal in the attenuation coefficient which is selected
by changes in the helicity in the primary beam is proportional to〈Z〉(1), while the signal
picked out by changing fromσ - to π -polarization is proportional to〈Z〉(2). For unpolarized
x-rays the attenuation coefficient is determined by〈Z〉(0).

Let us turn now to the various atomic quantities in (3.3). The mean value of the
spin–orbit interaction

〈S ·L〉 = 1

2
(2− 5 sin2 θ). (3.5)

Note that the physical range ofθ gives 〈S · L〉 a positive-definite value. The quantity
(3.5) vanishes for sinθ = −(2/5)1/2, which corresponds to a zero value for the spin–orbit
interaction,ζ . An equation forθ in terms of the ratio ofζ to the strength of the crystal-field
potential, 10Dq, is given by SAB, namely,

tan(2θ) = −4
√

6

{2+ 25(ζ/10Dq)} . (3.6)

One sees thatζ = 0 is consistent with sinθ = −(2/5)1/2. At the other extreme,ζ = ∞
andθ = 0. The corresponding value〈S ·L〉 = 1 is expected forS = 1

2 andL = 2 and an
infinite value of the spin–orbit interaction.

The atomic quantities that enter〈Z〉(1) are given by SAB. In our notation, and using
J = L+ S,

〈J0〉 = 1

6
(20 sin2 θ − 11) 〈S0〉 = − 1

30
(9 sin2 θ − 2

√
6 sin 2θ + 11 cos2 θ) (3.7a)

and

〈T0〉 = − 1

105

(
63 sin2 θ + 7

2

√
6 sin 2θ + 22 cos2 θ

)
. (3.7b)

These results are displayed in figure 1 as a function of the spin–orbit interaction. For the
special caseζ = 0, one finds〈L0〉 = 0,

〈J0〉 = 〈S0〉 = −1

2
and 〈T0〉 = −2

7
.

Settingθ = 0 in (3.7), which corresponds toζ = ∞,

〈J0〉 = −11

6
and this value is also readily obtained directly from|ψ〉 evaluated forθ = 0. The
corresponding values for〈S0〉, 〈L0〉 and〈T0〉 obtained from (3.7) are

〈L0〉 = 4〈S0〉 = 7〈T0〉 = −22

15
.
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Figure 1. The mean values, or diagonal matrix elements, of the atomic quantities relevant for
the idealized scattering length are displayed as functions of the spin–orbit interactionsζ . Due to
the simplicity of the wave function for the 3d9 ion only the zeroth component of each spherical
tensor operator is required in the scattering length. The most general case is covered by the
results (A.17)–(A.19).

For these values and̄J = 1
2 one finds that〈Z〉(1) is zero. This is a consequence of a more

general result that〈Z〉(K) at the L2 edge is proportional to sin2 θ . Other studies of〈T0〉 for
different ions have been made by Collinset al (1995) and Crocombetteet al (1996).

The atomic quantities in〈Z〉(2) are

〈P0〉 = 3

10

(
− sin2 θ + 1

2

√
6 sin 2θ + 8

3
cos2 θ

)
(3.8a)

〈Q0〉 = 3

10
(7 sin2 θ −

√
6 sin 2θ + 8 cos2 θ) (3.8b)

and

〈R0〉 = −3

5

(
7 sin2 θ + 2

3

√
6 sin 2θ − 2 cos2 θ

)
. (3.8c)

Expressions for the operatorsP0, Q0 andR0 are obtainable from (A.12)–(A.14);Q0 is the
quadrupole operator for orbital angular momentum whileP0 andR0, like T0, combine spin
and orbital angular momenta. The results (3.8) are displayed in figure 1. Considering again
the limiting cases, forζ = 0 one finds

〈P0〉 = 〈R0〉 = 0 and 〈Q0〉 = 3.
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Hence, when the spin–orbit interaction on the 3d electrons is set to zero, the spin-dependent
parts of〈Z〉(0) and〈Z〉(2) are zero. By contrast, for the same value ofζ the spin-dependent
parts of〈Z〉(1) are non-zero, and〈L0〉 = 0. The null value of〈L0〉 for ζ = 0 reflects the
fact that the03 orbital is non-magnetic. When the spin and orbital angular momenta are
fully aligned, by an infinite spin–orbit interaction,

〈P0〉 = 1

3
〈Q0〉 = 2

3
〈R0〉 = 4

5
.

As we have mentioned, the expressions for〈Z〉(K) simplify at the L2 edge. Setting
J̄ = 1

2 in (3.3) and using (3.5), (3.7) and (3.8) one finds

〈Z〉(0) = − 1

3
√

3
〈R〉2X(0)0 sin2 θ (3.9a)

〈Z〉(1) = 1

3
√

2
〈R〉2X(1)0 sin2 θ (3.9b)

and

〈Z〉(2) = − 1

3
√

6
〈R〉2X(2)0 sin2 θ. (3.9c)

The collapse of the expressions evaluated forJ̄ = 1
2 to these anticipated simple results gives

us confidence that we have correctly calculated the contributions to〈Z〉.
It is often the case that it is very convenient to calculate the wave function of the

valence shell of the absorbing ion in a set of local, Cartesian axes that do no coincide
with the axes used to define the geometry of the experiment. In such a case one needs
to obtain the atomic matrix elements inZ(µ;µ′) for the axes in whichX(K) is calculated
from the atomic matrix elements calculated in the local axes. The mathematical structure of
the relationship between the two sets of matrix elements is quite simple if in the local axes
the atomic matrix elements are diagonal with respect to the magnetic quantum numbers. In
fact, one usually selects the local axes such that the dominant matrix elements are diagonal,
to a good approximation. For the model 3d ion all of the atomic matrix elements in〈Z〉
are diagonal, as we have seen.

The local axes are obtained by rotating the axes in whichX(K) is calculated by a
transformation defined by three Euler angles; cf. (4.3). For the simple case at hand only
two angles,α and β, are required. Using, by way of an example, the rank-two operator
R, the atomic matrix element〈µ|Rm0|µ′〉 in the set of axes,(x, y, z), in which X(2) is
calculated is

〈µ|Rm0|µ′〉(xyz) = C(2)m0
(β, α)〈µ|R0|µ′〉. (3.10)

Here,C(K)m0
(β, α) is a spherical harmonic normalized such thatC

(0)
0 (β, α) = 1. The same

expression is used forP andQ, while for L, S andT the spherical harmonic is of rank
one.

4. Dichroic signals in the attenuation coefficient

The attenuation coefficient is obtained from the imaginary part of mean value of the
scattering length, evaluated for a geometry of forward scattering and averaged with respect
to states of partial polarization in the primary beam. The polarization of the primary beam
is defined by a Stokes vectorP = (0, P2, P3) in which P2 is the mean helicity, andP3 > 0
is σ linear polarization andP3 < 0 isπ linear polarization. The dichroic signals are defined
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as the changes in the attenuation coefficient on changingP2 to −P2, or P3 to −P3. The
corresponding changes in the amplitudes of the signals are, respectively, the changes in
〈Z〉(1) or 〈Z〉(2), and the changes in the amplitudes are here denoted by1Z(C) and1Z(L).

From the results in (3.3) we find,

1Z(C) = − 1

30
〈R〉2P2q̂0

{
(2J̄ + 1)〈L0〉 ± 4

5
[2〈S0〉 + 7〈T0〉]

}
(4.1)

whereq̂0 is the projection of primary beam on the axis of magnetic quantization. The linear
dichroic signal is proportional to

1Z(L) = 1

90
〈R〉2P3(cos2 α sin2 β − cos2 β)

{
(2J̄ + 1)〈Q0〉 ± 12

5
[〈P0〉 + 〈R0〉]

}
. (4.2)

Here,α andβ are two of the three Euler angles required to define the axes of quantization
relative to the geometry of the experiment. Following the discussion given by Lovesey and
Collins (1996), the latter is specified by Cartesian coordinates(x, y, z) with the primary
beam along they-axis. The magnetic axis of quantization is

m = x̂ cosα sinβ + ŷ sinα sinβ + ẑ cosβ. (4.3)

From the last expression we find̂q0 = sinα sinβ. The values of (4.1) and (4.2) averaged
with respect to the direction ofm are zero, of course.

The results (4.1) and (4.2) embody the sum rules for the dichroic signals for the Cu2+

ion. The sum rules are applied to empirical data for the attenuation coefficient to extract
values for the various atomic quantities that are involved. The differences between (4.2)
and the corresponding result given by Carraet al (1993a) are discussed in the appendix to
this paper.

5. Bragg diffraction

The cross-section for Bragg diffraction is derived from|〈f 〉|2. To obtain the observed
quantity,|〈f 〉|2 must be averaged with respect to states of partial polarization in the primary
beam, and this problem has been addressed by Lovesey and Balcar (1996). In keeping with
their work, we examine a case for which〈Z〉 is diagonal with respect to the magnetic
quantum numbers. As we have shown, this is realized for the Cu2+ ion.

For one ion per unit cell,〈Z〉 is in fact the unit-cell structure factor introduced by
Lovesey and Balcar, and this is expressed in the form

F = 〈Z〉 = A1(ε
′ · ε)+ iA2m · (ε′ × ε)+ A3(ε

′ ·m)(ε ·m). (5.1)

In this expression,m is a unit vector that defines the axis of magnetic quantization. From
the results (3.4) and (A.17)–(A.19) one finds

A1+ 1

3
A3 = l〈R〉2

6(4l2− 1)

{
(2J̄ + 1)nh ± 4

(
l − 1

l

) 〈∑
s · l

〉}
(5.2a)

A2 = 〈R〉2
4(4l2− 1)

{
(2J̄ + 1)〈L0〉 ± 4

3
(l − 1) [l〈S0〉 + (2l + 3)〈T0〉]

}
(5.2b)

and

A3 = −〈R〉2
2(4l2− 1)(2l − 1)

{
(2J̄ + 1)〈Q0〉 ± 4

5
[(l − 1)(2l − 1)〈P0〉 + 3〈R0〉]

}
. (5.2c)

In these expressions〈R〉 is the radial integral connecting the core state, withl̄ = l− 1, and
the valence state. Note that the thermodynamic properties ofA2 andA3 can be expected to
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be quite different. For example,A2 will vanish in the paramagnetic phase in the absence
of a magnetic field, whereas for the same conditionsA3 can be different from zero.

A general expression for the average value of|F |2 is known. Here, we will consider
two cases of the expression that are of particular interest for experiments. First, letm
be directed perpendicularly to the plane defined by the primary and secondary beams of
x-rays. In this case|F |2 is independent of the helicity in the primary beam. If the x-rays
are deflected through an angleϕ (=twice the Bragg angle),

|F |2 = 1

2
(1+ P3)(A1+ A3)

2+ 1

2
(1− P3)

{
(A1 cosϕ)2+ (A2 sinϕ)2

}
m ⊥ plane.

(5.3)

In the standard setting at a synchrotron source of x-rays the primary radiation is almost
pure σ -polarization, described byP3 = 1, in which case the unit-cell structure factor is
independent of the magnetization.

Secondly, letm lie in the plane of scattering and be parallel to the scattering vector,
k. In this case|F |2 contains an overlap betweenA2, andA1 andA3 that is induced by the
helicity in the primary beam. One finds

|F |2 = 1

2
(1+ P3)A

2
1+

1

2
(1− P3)

{(
A1+ 1

3
A3

)
cosϕ + 1

6
A3(3+ cosϕ)

}2

+
(
A2 sin

1

2
ϕ

)2

+ P2A2 sin
1

2
ϕ

{(
A1+ 1

3
A3

)
(cosϕ − 1)

+ 1

6
A3(5+ cosϕ)

}
m ‖ k. (5.4)

The quantityA1 + A3/3 is not likely to depend strongly on the temperature. As in (5.3),
the contribution to|F |2 in (5.4) fromA2 is multiplied by a factor that includes sin(ϕ/2), so
the magnetization does not contribute strongly to low-order diffraction peaks. The overlap
induced byP2 is allowed by a ferromagnetic order, created by a spontaneous ordering or an
external magnetic field. The overlap is forbidden at a purely magnetic reflection in a material
for which the chemical and magnetic ordering is different, e.g. a collinear antiferromagnet.

Let us consider the L2 edge of the Cu2+ ion, for which the scattering length is
very simple. For a ferromagnetic configuration of the moments and (3.9) one finds
A1 = A2 = −A3, and

A1 = 1

6
〈R〉2 sin2 θ.

Thus, form perpendicular to the plane of scattering,

|F |2 = 1

2
A2

1(1− P3)

and, writings = sin(ϕ/2), for m parallel tok,

|F |2 = 1

2
A2

1

{
(1+ P3)+ (1− P3)s

4+ 2s2− 2P2s(1+ s2)
}
.

It is interesting to note that for pureσ -polarization(P3 = 1), in the first case the diffraction
cross-section is zero, and in the second case it is simply

|F |2 = A2
1(1+ s2).
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6. The complete scattering length

The idealized scattering length that we have used in previous sections is created from the
complete scattering length by summing it over quantum numbers for the hole in the core
state. These are collectively denoted byη, and the magnetic quantum number for the core
state isM̄. With this notation, the matrix elements ofZ used in the preceding sections
and the matrix elements used here for the complete scattering length,〈Z〉(K) and 〈Zη〉(K),
respectively, are related by

〈Z〉(K) =
∑
M̄

〈Zη〉(K).

The degeneracy with respect tōM will be lifted by the exchange field at the core electron
created by the unpaired valence electrons.

It has been shown that the complete scattering length can be expressed as a nested
sum of the Racah unit tensors used for the idealized scattering length (Lovesey 1997).
To round out our discussion of the 3d9 ion described by the wave function (2.1) we give
the components of the complete scattering length. This demands a knowledge of more
unit tensors than those in the idealized scattering length, i.e. the complete scattering length
contains more information on the atomic properties of the valence electrons than is to be
found in the idealized variant. In the case of one hole in the valence shell the unit tensors
are relatively easy to calculate because no coefficients of fractional parentage are used. All
of the relevant details for the 3d9 ion are contained in the paper by Lovesey and Balcar
(1997).

We consider separately the two values ofJ̄ . For J̄ = 1
2 we find

〈Zη〉(0) = −1

6

(
1

3

)1/2

〈R〉2X(0)0 sin2 θ(1+ 2M̄) (6.1a)

〈Zη〉(1) = 1

6

(
1

2

)1/2

〈R〉2X(1)0 sin2 θ(1+ 2M̄) (6.1b)

and

〈Zη〉(2) = −1

6

(
1

6

)1/2

〈R〉2X(2)0 sin2 θ(1+ 2M̄). (6.1c)

On summing onM̄ these results reduce to (3.9), as expected. The results in (6.1) are zero
for M̄ = − 1

2, and this condition stems from the values of the magnetic quantum numbers
in the wave function (2.1) and the selection inherent in an E1 adsorption event. The results
(6.1) also vanish for an infinite value of the spin–orbit interaction in the 3d valence state,
which is described byθ = 0.

For J̄ = 3
2, of course, the scattering length also is zero forM̄ = − 1

2. We find that
〈Zη〉(1) is zero forM̄ = 3

2. The non-zero values are as follows.

(i) M̄ = 1
2:

〈Zη〉(0) = − 1

75

(
1

3

)1/2

〈R〉2X(0)0 (2 sin2 θ −
√

6 sin 2θ + 3 cos2 θ) = 〈R〉2X(0)0 6

(
1

2

)
〈Zη〉(1) = −

(
3

2

)1/2

〈R〉2X(1)0 6

(
1

2

)
〈Zη〉(2) =

(
1

2

)1/2

〈R〉2X(2)0 6

(
1

2

)
.

(6.2a)
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(ii) M̄ = 3
2:

〈Zη〉(0) = − 1

75

(
1

3

)1/2

〈R〉2X(0)0 (3 sin2 θ +
√

6 sin 2θ + 2 cos2 θ) = 〈R〉2X(0)0 6

(
3

2

)
〈Zη〉(2) = −

√
2〈R〉2X(2)0 6(

3

2
).

(6.2b)

(iii) M̄ = − 3
2:

〈Zη〉(0) = −1

3

(
1

3

)1/2

〈R〉2X(0)0 cos2 θ

〈Zη〉(1) = −1

3

(
1

2

)1/2

〈R〉2X(1)0 cos2 θ

〈Zη〉(2) = −1

3

(
1

6

)1/2

〈R〉2X(2)0 cos2 θ.

(6.2c)

For M̄ = − 3
2 there are no contributions proportional to sin2 θ and sin 2θ because the

corresponding wave functions create matrix elements with|J̄ , M̄〉 in which 1M exceeds
the rank (unity) of the dipole operator.

It is interesting to note what happens to the foregoing results for the case of zero spin–
orbit interaction. One finds that6( 1

2) = −1/15
√

3 while 6( 3
2) = 0. Hence, the spectrum

of states in the scattering length involves onlyM̄ = 1
2 and− 3

2. In the opposite extreme of
an infinite spin–orbit interaction all of the foregoing contributions are different from zero.

Lastly, we note that by adding thēM-contributions in (6.2) one recovers the results for
the idealized scattering length displayed in section 3. In one sense, the contributions (6.2)
can be regarded as components of higher-order sum rules for the attenuation coefficient.

7. Summary

The absorption and resonance-enhanced scattering of x-rays by a magnetic material has
been discussed in the framework of an atomic model and the scattering length. Idealized
versions of the latter incorporate the assumption that the core state involved in the E1
absorption event is degenerate. The degeneracy will be lifted by an exchange interaction
created by unpaired electrons in the valence shell. In the event that this type of interaction
is a significant perturbation the assumption no longer is justified and the so-called complete
scattering length must be used to calculate the attenuation coefficient and cross-sections for
scattering.

General expressions are given for atomic quantities in the idealized scattering length,
for an electric-dipole absorption event. Use of the expressions has been illustrated in a
thorough discussion of a 3d9 ion, for which the wave function contains states from two
J -manifolds. We have used the wave function derived by Sainctavitet al (1995), and have
confirmed and extended their findings for the atomic quantities necessary for the description
of the scattering length. Our results are applied to a discussion of the dichroic signals in
the attenuation coefficient and the cross-sections.
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Appendix

We gather here the key results for the idealized scattering length used in the text. The
valence electrons are in the shellln, and a photon is absorbed in to a shell with angular
momentuml̄ = l − 1. The core hole has a total angular momentumJ̄ = l̄ ± 1

2. For an E1
event, the matrix elementZ(µ;µ′) is

Z(µ;µ′) = −l〈l|R|l̄〉2
∑
K

(2K + 1)1/2
{

1
l

K

l̄

1
l

}∑
m0

〈µ|T Km0
|µ′〉X(K)−m0

(−1)m0. (A.1)

The componentsX(K)0 are given in the text, and the remaining components are found in
Lovesey and Balcar (1996).

The quantum numbers of the valence state areν, S, L, J andM, and they are collect-
ively denoted byµ in (A.1). In forming a matrix element ofT Km0

the magnetic quantum
numbers factor out in terms of a 3j -symbol, by virtue of the Wigner–Eckart theorem. In
the following material we elect to continue with the use ofµ as a shorthand for all of the
quantum numbers other thanM. A reduced matrix element is defined by

〈µM|T Km0
|µ′M ′〉 = (−1)J−M

(
J

−M
K

m0

J ′

M ′

)
(µ||T (K:J̄ )||µ′). (A.2)

In what follows we give results for{
1
l

K

l − 1
1
l

}
(µ||T (K:J̄ )||µ′) (A.3)

for a givenJ̄ andK = 0, 1 and 2. The atomic quantities that enter the results are discussed
later. For (A.3) we have, for̄J = l̄ ± 1

2, the following results.

(i) K = 0:

1

(2l − 1)

{
1

6(2l + 1)

}1/2{
(2J̄ + 1)(µ||W(00)0||µ′)

∓ 6(l − 1)

(
l + 1

l

)1/2

(µ||W(11)0||µ′)
}
. (A.4)

Here, the reduced matrix elements of the unit tensors are

(µ||W(00)0||µ′) = δµ,µ′nh
{

2J + 1

2(2l + 1)

}1/2

(A.5)

wherenh = (2(2l + 1)− n), and

(µ||W(11)0||µ′) = −
√

2

3

1

(l||l||l) (µ||
∑
j

(s · l)j ||µ′) (A.6)

in which j ranges over all holes in the valence shell, and the reduced matrix element
(l||l||l) = {l(l + 1)(2l + 1)}1/2 .

(ii) K = 1:

− 1

2
√

6

1

l(4l2− 1)

{
(2J̄ + 1)(µ||L||µ′)± 4

3
(l − 1)

[
l(µ||S||µ′)+ (2l + 3)(µ||T ||µ′)]} .

(A.7)
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In this result,

(µ||L||µ′) =
√

2(l||l||l)(µ||W(01)1||µ′) (A.8)

(µ||S||µ′) =
{

3

2
(2l + 1)

}1/2

(µ||W(10)1||µ′) (A.9)

and

(µ||T ||µ′) = −(µ||
∑
j

(3R̂0(R̂ · s)− s0)j ||µ′)

= −
{

15

(2l − 1)(2l + 3)

}1/2

(l||l||l)(µ||W(12)1||µ′) (A.10)

whereR̂ is a unit position vector.
(iii) K = 2:(

1

30

)1/2 1

l(2l − 1)2(2l + 1)

{
(2J̄ + 1)(µ||Q||µ′)

± 4

5

[
(l − 1)(2l − 1)(µ||P ||µ′)+ 3(µ||R||µ′)]}. (A.11)

Here,

2(µ||P ||µ′) = (µ||
∑
j

(3s0l0− s · l)j ||µ′) = 3(l||l||l)(µ||W(11)2||µ′) (A.12)

2(µ||Q||µ′) = (µ||
∑
j

(3l20 − l(l + 1))j ||µ′)

= (l||l||l) {2(2l − 1)(2l + 3)}1/2 (µ||W(02)2||µ′) (A.13)

and

−2(µ||R||µ′) = (µ||
∑
j

{(2l(l + 1)+ 1)s0l0+ (l(l + 1)− 2)s · l− 5l0(s · l)l0}j ||µ′)

= (l||l||l)
{

7

2
(l − 1)(2l − 1)(l + 2)(2l + 3)

}1/2

(µ||W(13)2||µ′). (A.14)

The definitions of the reduced matrix elements ofP andQ agree with the ones adopted by
Carraet al (1993a). Our definition ofR differs from the one that they give by a factor of 2,
i.e. on the left-hand side of (A.14) they have a factor 4. Regarding the result (A.11), Carra
et al (1993a) have the opposite relative sign betweenQ, andP andR, which we believe is
a mistake. Furthermore, our numerical results for mean values of these operators differ in
sign from the entries in their table 2. One might speculate that the sign difference can be
attributed to the difference in the sign of even-rank tensors for configurations of electrons
and holes, respectively. In the scattering length it is natural to use valence hole states.

Lovesey and Balcar (1997) provide tables of the reduced matrix elements of the unit
tensors that appear in the foregoing results. The reduced matrix elements of the atomic
quantities follow from the standard definition of a spherical tensor formed from a product
of two spherical tensors:

X
(ab)K
Q =

∑
qq ′

∑
j

(z(a)q y
(b)
q ′ )j (aqbq

′|KQ) (A.15)
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in which z(a) and y(b) are tensors acting on the spin and on the orbit, respectively, and
(aqbq ′|KQ) is a Clebsch–Gordan coefficient. The definition of the unit tensor is such that
the reduced matrix element

(µ||X(ab)K ||µ′) = (s||z(a)||s)(l||y(b)||l)(µ||W(ab)K ||µ′). (A.16)

Fora = 0, (s||z(0)||s) = (2s+1)1/2 = √2 and fora = 1, (s||z(1)||s) = (s||s||s) = (3/2)1/2.
From these results one immediately gets (A.8) and (A.9). To obtain (A.14), the most
complicated of the results, to a total of three orbital operators apply twice the tensor coupling
defined in (A.15) to form a tensor of rank 3, and couple this tensor to one spin operator,
again using (A.15), to form a tensor of rank 2. The prefactor in (A.14) is the reduced matrix
element of the orbital tensor of rank 3, i.e. in (A.16) the reduced matrix element ofy(3).

In the main text we calculate the diagonal matrix element, or the mean value, of the
scattering length. In general, this quantity is proportional to a sum of matrix elements
Z(µ;µ) andZ(µ;µ′) weighted by factors that are determined by interactions that perturb
the valence electrons, e.g. the ligand crystal-field. For the wave function (2.1) in〈f 〉 there
are five matrix elements. We refer to this linear combination of matrix elementsZ(µ;µ′)
as the mean value ofZ, and denote it by〈Z〉. The notation for a mean value is extended
to the atomic quantities, e.g. the mean value ofR, which is a tensor of rank two with the
reduced matrix element (A.14), is denoted by〈R〉.

The mean value〈Z〉 in its most general form is constructed according to (3.2) using the
results

(i) K = 0:

〈Z〉(0) = − 1

2
√

3
〈R〉2X(0)0

(
l

4l2− 1

){
(2J̄ + 1)nh ± 4

(
l − 1

l

) 〈∑
s · l

〉}
. (A.17)

(ii) K = 1:

〈Z〉(1) = 1

2
√

2
〈R〉2

(
1

4l2− 1

)
X(1) ·

{
(2J̄ + 1)〈L〉 ± 4

3
(l − 1) [l〈S〉 + (2l + 3)〈T 〉]

}
.

(A.18)

(iii) K = 2:

〈Z〉(2) = − 1√
6
〈R〉2

(
1

(2l − 1)2(2l + 1)

)
X(2) ·

{
(2J̄ + 1)〈Q〉

± 4

5
[(l − 1)(2l − 1)〈P 〉 + 3〈R〉]

}
. (A.19)

The results (A.17)–(A.19) are the basis for the calculations leading to (3.3). In the
foregoing results the scalar product withX(K) is defined in the standard manner, e.g.

X (2) · 〈R〉 =
∑
m0

X
(2)
−m0
〈Rm0〉(−1)m0. (A.20)

Applied to K = 1, equation (A.20) is equivalent to the standard scalar product of two
vectors. In the event that the atomic matrix element is calculated in local principal axes the
atomic matrix element in (A.20) is obtained by a standard application of rotation matrices,
e.g. (3.10).
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